装药密度对反应装甲抗射击影响的研究

尤杨, 张建仁, 王立平, 冯雄波, 郝飞, 黄鹤

装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 86-93.

PDF(4480 KB)
PDF(4480 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 86-93. DOI: 10.7643/ issn.1672-9242.2025.09.010
武器装备

装药密度对反应装甲抗射击影响的研究

  • 尤杨1, 张建仁2,*, 王立平3, 冯雄波2, 郝飞2, 黄鹤2
作者信息 +

Effect of Charge Density on the Anti-fire of Reactive Armor

  • YOU Yang1, ZHANG Jianren2,*, WANG Liping3, FENG Xiongbo2, HAO Fei2, HUANG He2
Author information +
文章历史 +

摘要

目的 研究反应装甲装药密度对其抗射击性能的影响。方法 首先对穿甲弹引爆反应装甲的机理及反应装甲装药引爆判据进行理论分析,认为反应装甲装药密度属于其中一个重要的影响因素。同时采用数值模拟和试验验证方法研究装药密度对反应装甲抗某小口径穿甲弹射击的影响。结果 在一定试验条件下,当装药密度为1.65 g/cm3时,3块反应装甲只是被该穿甲弹引燃,完全不会发生爆炸;当装药密度为1.25 g/cm3时,其中有2块反应装甲被引爆。试验验证与理论分析以及数值仿真结论相吻合,结论 当装药密度达到一定值时,提高装药密度可以提高反应装甲被冲击起爆的阈值。

Abstract

The work aims to study the effect of the explosive charge density of reactive armor on its shooting resistance performance. Firstly, theoretical analysis was conducted on the mechanism of armor-piercing shells triggering reactive armor and the criterion for explosive charge triggering of reactive armor. It was found that the explosive charge density was one of the important affecting factors. At the same time, the effects of explosive charge density on the shooting resistance of reactive armor against the small caliber armor-piercing shells were studied by numerical simulation and experimental verification methods. Under certain test conditions, when the explosive charge density was 1.65 g/cm3, only three pieces of reactive armor were ignited by the armor-piercing shell and would not explode at all. When the explosive charge density was 1.25 g/cm3, two pieces of reactive armor were detonated. The experimental verification, theoretical analysis and numerical simulation conclusions were consistent. Once the charge density reaches the certain value, increasing the explosive charge density can raise the threshold for reactive armor to be triggered by impact.

关键词

反应装甲 / 防护能力 / 抗射击 / 穿甲弹 / 装药密度 / 数值模拟

Key words

reactive armor / protection capability / shooting resistance / armor-piercing shells / charge density / numerical simulation

引用本文

导出引用
尤杨, 张建仁, 王立平, 冯雄波, 郝飞, 黄鹤. 装药密度对反应装甲抗射击影响的研究[J]. 装备环境工程. 2025, 22(9): 86-93 https://doi.org/10.7643/ issn.1672-9242.2025.09.010
YOU Yang, ZHANG Jianren, WANG Liping, FENG Xiongbo, HAO Fei, HUANG He. Effect of Charge Density on the Anti-fire of Reactive Armor[J]. Equipment Environmental Engineering. 2025, 22(9): 86-93 https://doi.org/10.7643/ issn.1672-9242.2025.09.010
中图分类号: TJ99   

参考文献

[1] 徐永杰, 王晓东, 赵雄飞, 等. 非金属射流引爆反应装甲能力的数值模拟[J]. 中北大学学报(自然科学版), 2025, 46(2): 133-139.
XU Y J, WANG X D, ZHAO X F, et al.Numerical Simulation of the Capability of Non-Metallic Jet to Detonate Reactive Armor[J]. Journal of North University of China (Natural Science Edition), 2025, 46(2): 133-139.
[2] 关思曼, 王志军, 伊建亚, 等. 聚乳酸射流对爆炸反应装甲的冲击起爆阈值研究[J]. 南京理工大学学报, 2025, 49(1): 67-74.
GUAN S M, WANG Z J, YI J Y, et al.Study on the Impact Initiation Threshold of PLA Jet on Explosive Reactive Armor[J]. Journal of Nanjing University of Science and Technology, 2025, 49(1): 67-74.
[3] 蒋文灿, 傅丹, 梁斌, 等. 数值模拟研究屏蔽板厚度对杆式射流冲击屏蔽炸药过程的影响[J]. 弹箭与制导学报, 2023, 43(6): 8-13.
JIANG W C, FU D, LIANG B, et al.Numerical Investigation on the Initiation Mechanism of Covered Charge with Variable Thickness Shell Impacted by Rod Jet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(6): 8-13.
[4] 刘卓. 金属射流冲击重型双层反应装甲起爆研究[D]. 西安: 西安工业大学, 2022.
LIU Z.Study on Initiation of Heavy-Duty Double-Layer Reactive Armor by Metal Jet Impact[D]. Xi’an: Xi’an Technological University, 2022.
[5] 徐建川, 何亚斌, 李明阳, 等. 高能材料弹体冲击起爆大壁厚装药机制数值分析[J]. 兵器装备工程学报, 2025, 46(2): 122-129.
XU J C, HE Y B, LI M Y, et al.Numerical Analysis on the Initiation Mechanism of the Large-Walled Charges Impacted by Energetic Material Penetrator[J]. Journal of Ordnance Equipment Engineering, 2025, 46(2): 122-129.
[6] 康浩博, 蒋建伟, 彭嘉诚, 等. 杆式弹对厚壁壳体装药冲击起爆机制模拟分析[J]. 爆炸与冲击, 2022, 42(1): 87-98.
KANG H B, JIANG J W, PENG J C, et al.Simulation Analysis on the Initiation Mechanism of the Explosive Charge Covered with a Thick Shell Impacted by a Rod Projectile[J]. Explosion and Shock Waves, 2022, 42(1): 87-98.
[7] 姜颖资, 王伟力, 傅磊, 等. 钨合金穿甲弹对超音速导弹战斗部冲击起爆研究[J]. 弹箭与制导学报, 2014, 34(3): 102-105.
JIANG Y Z, WANG W L, FU L, et al.Research on the Impact Initiation to Supersonic Missile by Tungsten Heavy Alloy Penetrator[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(3): 102-105.
[8] 王淑萍, 王晓峰, 金大勇. 压制密度及密度均匀性对装药撞击安全性的影响[J]. 含能材料, 2011, 19(6): 705-708.
WANG S P, WANG X F, JIN D Y.Influence of Pressed Explosive Charges Density and Its Distribution on Impact Safety[J]. Chinese Journal of Energetic Materials, 2011, 19(6): 705-708.
[9] 李小笠, 赵国志, 李文彬. 长杆体垂直冲击带盖板炸药的临界起爆准则[J]. 弹道学报, 2004, 16(2): 51-55.
LI X L, ZHAO G Z, LI W B.Critical Energy Criterion Used to Predict Covered Explosives Impacted by Rod[J]. Journal of Ballistics, 2004, 16(2): 51-55.
[10] 陈思敏, 黄正祥, 贾鑫, 等. 射流冲击盖板覆盖下有限厚炸药的仿真和试验研究[J]. 含能材料, 2021, 29(2): 114-123.
CHEN S M, HUANG Z X, JIA X, et al.Simulation and Experimental Study of Jet Impact on Covered Finite-Thickness Explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(2): 114-123.
[11] MICKOVIĆ D, JARAMAZ S, ELEK P, et al.A Model for Explosive Reactive Armor Interaction with Shaped Charge Jet[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 53-61.
[12] 姬龙. 反爆炸反应装甲理论与关键技术研究[D]. 南京: 南京理工大学, 2013.
JI L.Research on Theory and Key Technologies of Anti-Explosive Reaction Armor[D]. Nanjing: Nanjing University of Science and Technology, 2013.
[13] 田亚锋, 汪立国, 吴护鹏, 等. 某小口径弹丸穿甲与静爆引爆TNT炸药研究[J]. 火炮发射与控制学报, 2016, 37(4): 35-37.
TIAN Y F, WANG L G, WU H P, et al.Study on Projectile Oblique Penetration into Steel Armor Plate and the Detonation of TNT Charge[J]. Journal of Gun Launch & Control, 2016, 37(4): 35-37.
[14] 刘卓, 郁红陶, 刘兆恒. 新型反应装甲主装药射流感度研究[J]. 火炮发射与控制学报, 2022, 43(4): 27-32.
LIU Z, YU H T, LIU Z H.The Study on the Jet Sensitivity of the Main Charge of a New Type of Reactive Armor[J]. Journal of Gun Launch & Control, 2022, 43(4): 27-32.
[15] 姬龙, 黄正祥, 顾晓辉. 双层爆炸反应装甲作用场分析与试验研究[J]. 兵工学报, 2013, 34(5): 541-546.
JI L, HUANG Z X, GU X H.Analysis and Experimental Study on the Explosive Field of Double-Layer Explosive Reactive Armor[J]. Acta Armamentarii, 2013, 34(5): 541-546.
[16] ROSENBERG Z, DEKEL E.The Penetration of Rigid Long Rods - Revisited[J]. International Journal of Impact Engineering, 2009, 36(4): 551-564.
[17] 刘蓓蓓, 黄正祥, 祖旭东, 等. 单层爆炸反应装甲的间隔等效靶研究[J]. 中国科技论文, 2015, 10(4): 488-491.
LIU B B, HUANG Z X, ZU X D, et al.Single Spaced Equivalent Target of Explosive Reactive Armor[J]. China Sciencepaper, 2015, 10(4): 488-491.
[18] LIDÉN E, HELTE A. The Break-up Tendency of Long Rod Projectiles[J]. Defence Technology, 2016, 12(2): 177-187.
[19] 熊良平, 黄道业, 王凤英. 新型反应装甲结构对长杆弹小法线角侵彻的干扰分析和防护效能[J]. 爆炸与冲击, 2013, 33(1): 108-112.
XIONG L P, HUANG D Y, WANG F Y.Protection Effectiveness of a New Explosive Reactive Armor Against Penetration of Long-Rod Projectiles with Small Yaw Angles[J]. Explosion and Shock Waves, 2013, 33(1): 108-112.
[20] 曹红根. 爆炸式反应装甲穿而不爆的研究[D]. 南京: 南京理工大学, 2006.
CAO H G.Study on Explosive Reactive Armor Penetrating without Explosion[D]. Nanjing: Nanjing University of Science and Technology, 2006.
[21] HELD M.Stream of Reaction Products Behind the Detonation Wave Front[J]. Energetic Matertials, 2001, 9(1): 4-7.
[22] ROSENBERG Z, DEKEL E.On the Role of Material Properties in the Terminal Ballistics of Long Rods[J]. International Journal of Impact Engineering, 2004, 30(7): 835-851.
[23] 贾福庆. 小口径易碎型穿甲弹穿甲毁伤特性研究[D]. 南京: 南京理工大学, 2010.
JIA F Q.Study on Damage Characteristics of Small-Caliber Fragile Armor-Piercing Projectile[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[24] 程瑶, 赵太勇, 陈智刚, 等. 分段式穿甲弹侵彻效能分析[J]. 火炮发射与控制学报, 2019, 40(4): 26-30.
CHENG Y, ZHAO T Y, CHEN Z G, et al.An Analysis of Penetration Efficiency of Segmented Penetrator[J]. Journal of Gun Launch & Control, 2019, 40(4): 26-30.
[25] 梁宇, 李如江, 张华申, 等. 射流斜侵彻薄层装药结构数值模拟和试验研究[J]. 火工品, 2023(4): 43-49.
LIANG Y, LI R J, ZHANG H S, et al.Numerical Simulation and Experimental Study on Oblique Penetration of Thin Layer Charge by Jet[J]. Initiators & Pyrotechnics, 2023(4): 43-49.

PDF(4480 KB)

Accesses

Citation

Detail

段落导航
相关文章

/